Illustration : RE.
Les batteries perdent progressivement leur capacité de charge, limitant ainsi leur durée de vie. Autrement dit : les batteries s’usent. Et si ces dernières décennies ont amené des progrès spectaculaires, il n’en reste pas moins que la durée de vie d’une batterie est l’un des paramètres les plus importants pour leur évaluation économique.
Trouver des moyens d’augmenter à moindre coût la durée de vie d’une batterie est un des premiers objectifs de la recherche actuelle sur ces systèmes. En effet, un plus grand nombre de cycles permet de répartir le coût d’investissement dans la batterie sur une plus grande quantité cumulée d’électricité stockée, et donc de réduire le coût du stockage unitaire, c’est-à-dire par kilowattheure. On en conçoit tout l’intérêt lorsqu’il s’agit de stocker de grandes quantités d’électricité renouvelable.
Dans ce contexte, Rimac Energy, un fabricant basé à côté de Zagreb, en Croatie, vient d’annoncer avoir une solution pour garantir sa batterie lithium-ion au-delà de douze mille cycles. Mieux : elle promet une baisse de capacité nulle les deux premières années de fonctionnement de la batterie.
L’inévitable usure des batteries lithium-ion
Avant d’aller plus loin, faisons un court détour en rappelant le principe de fonctionnement d’une batterie Li-ion. Au cœur de la batterie, se trouve l’accumulateur, qui fonctionne sur la base du transfert, au travers d’un électrolyte liquide, de l’ion lithium Li+ depuis une électrode positive (par exemple, un phosphate de fer et de lithium) vers une électrode négative (par exemple, du graphite) ; c’est le fonctionnement lors de la décharge. Ce transfert d’ion lithium est inversé au cours de la charge : le lithium est alors transféré de l’électrode négative vers l’électrode positive. Pour donner une image, les chercheurs parlent d’un principe de « rocking-chair », pour illustrer ce mouvement pendulaire du lithium entre les deux électrodes de polarité opposée.
La capacité de charge d’une batterie Li-ion est donc directement liée à la quantité d’ions lithium qui peut circuler entre les électrodes. Si du lithium est fixé, la quantité de lithium transférable diminue, et la capacité de la batterie diminuera inévitablement. Or, il existe de nombreuses causes qui sont à l’origine d’une immobilisation du lithium, et donc d’une usure des batteries : la formation de lithium métallique au niveau de l’électrode négative, la présence d’éléments inertes dans l’électrode positive ou encore une dégradation de l’électrolyte.
La solution de Rimac Energy : la prélithiation
Pour parer à cette usure progressive, Rimac Energy a parié sur une technique : la prélithiation. Cette technique consiste à intégrer dans l’accumulateur une plus grande quantité de lithium que nécessaire, de sorte qu’au fur et à mesure de l’immobilisation du lithium, il est immédiatement remplacé par le lithium surnuméraire.
Le fabricant a intégré cette innovation dans le SineStack, son système de batterie lithium-fer-phosphate (LFP) de très grande capacité, à savoir 790 kWh. La prélithiation est assurée par un matériau basé sur un oxyde de fer, et qui contient l’excès de lithium qui permettra de compenser la perte progressive d’ions lithium disponibles. Cette technique est par ailleurs combinée avec un système de distribution électrique dit distribué, qui permettra de contrôler et d’équilibrer en direct la baisse de performance des accumulateurs Li-ion qui composent le système de batteries.
Cette combinaison de techniques permet à Rimac Energy d’avancer que son système de batteries est « le plus avancé du monde ». Si l’on ne doute pas du grand intérêt de ces innovations, cette revendication sera peut-être de courte durée. En effet, CATL a annoncé en avril un nouveau système de batterie, lui aussi basé sur la prélithiation, et qui, selon le fabricant chinois, pourrait permettre une baisse de capacité égale à zéro non pas les deux, mais les cinq premières années.