Cette ancienne centrale à charbon va accueillir un prototype de réacteur de fusion nucléaire un peu particulier


Cette ancienne centrale à charbon va accueillir un prototype de réacteur de fusion nucléaire un peu particulier

La centrale au charbon de Bull Run dans le Tennessee / Image : TVA, modifié par RE

L’entreprise américaine Type One Energy va convertir une ancienne centrale à charbon pour y implanter son prototype de réacteur à fusion nucléaire de type stellarator. Moins connu que le tokamak, ce type de réacteur a pourtant des avantages qui en font un sérieux candidat à la production d’électricité commerciale à partir de la fusion nucléaire. 

Après plus de cinquante ans à produire de l’électricité à partir de charbon en plein cœur du Tennessee, la centrale thermique de Bull Run, d’une puissance de 825 MW, pourrait bien retrouver une seconde jeunesse. Propriété de la TVA (Tennessee Valley Authority, et non Time Variance Authority), celle-ci pourrait, en effet, accueillir Infinity One, un prototype de réacteur à fusion nucléaire stellarator mis au point par l’entreprise Type One Energy.

Publicité

Pour l’heure, très peu de données techniques ont été divulguées par Type One Energy sur son prototype de réacteur. On sait tout de même que les travaux pourraient démarrer dès 2025, sous réserve de l’obtention de toutes les autorisations environnementales et administratives nécessaires à la mise en œuvre du prototype.

À lire aussi Cette société veut convertir directement l’énergie de la fusion nucléaire en électricité

Une potentielle alternative aux tokamaks

S’il a le même objectif que les réacteurs de recherche de type tokamak comme le JET, au Royaume Uni, ou le projet ITER, actuellement en cours de construction dans le sud de la France, le prototype Infinity One se distingue par une conception différente appelée Stellarator.

Tokamak et stellarator reposent sur un principe similaire : confiner un plasma (état de la matière dans lequel les noyaux des atomes sont débarrassés d’une partie de leurs électrons) grâce à un champ magnétique pour y réaliser une réaction de fusion nucléaire. Cependant, les deux réacteurs diffèrent de par leur conception. Avec un tokamak, ce confinement magnétique est obtenu en faisant passer un courant électrique à travers le plasma lui-même, ce qui peut engendrer des instabilités et limiter la durée pendant laquelle le plasma peut-être maintenu de manière stable.

Le prototype de Stellarator Wendelstein 7-X lors de sa construction en Allemagne / Image : Max-Planck-Institut für Plasmaphysik

Mis au point par l’astrophysicien américain Lyman Spitzer en 1950, le stellarator repose sur le positionnement très spécifique d’aimants tout au long du réacteurs qui permet d’obtenir un champ magnétique hélicoïdal. Grâce à cela, il n’est alors pas nécessaire de faire passer un courant électrique dans le plasma pour le confiner. En théorie, le stellarator permet d’obtenir des plasmas beaucoup plus stables et d’éviter le phénomène de disruption, un évènement très redouté lors des expérimentations des tokamaks qui a pour conséquence de dégrader très fortement la paroi interne de ce dernier.

À lire aussi L’Allemagne veut du nucléaire, mais pas celui que vous croyez

Un réacteur plus complexe encore qu’un tokamak

À l’heure actuelle, le stellarator possède tout de même deux inconvénients qui expliquent qu’ils soient moins communs que les tokamaks : tout d’abord, il est moins adapté que ces derniers pour faire monter le plasma en température. Mais surtout, il est beaucoup plus complexe à construire. En conséquence, on ne trouve qu’une dizaine de Stellarator en fonctionnement dans le monde, contre une soixantaine de tokamaks. C’est en Allemagne qu’on trouve le prototype le plus abouti. Nommé Wendelstein 7-X, ce réacteur Stellarator a pour mission de démontrer l’intérêt de ce type de conception pour de la production d’électricité commerciale à partir de la fusion nucléaire. Enfin, plutôt que le confinement magnétique des tokamak et des stellarator, certains laboratoires misent plutôt sur l’utilisation de lasers pour obtenir une réaction de fusion nucléaire.

Si la fusion nucléaire continue de susciter de vifs espoirs, cette technologie reste encore extrêmement lointaine. À titre d’exemple, l’ITER, plus grand prototype de réacteur de fusion jamais construit, ne devrait pas être utilisé à pleine puissance avant 2035.

 

 

Publicité

Sur le même sujet

Commentaire

Copyright © 2024 Révolution Energétique - Tous droits réservés Mentions légales Site édité par Saabre

Exit mobile version